
Tutorial for the easyExon

Version 1.0.3

Contents

0. Flowchart of easyExon	1
1. Alt-Splicing Study	2
Step 0: Input Data Format Selection	2
Step 1: Data Preparation	3
Step 1.a: Get summary files by Affymetrix Power Tools (APT)	3
Step 1.b: Load *.txt summary files	10
Step 2: Array Grouping and Data Processing	13
Step 2-1: Array Grouping	13
Step 2-2: Meta Probeset List Information	14
Step 2-2-1: Select Gene-level summary file	14
Step 2-2-2: Select meta probeset definitions	14
Step 2-3: Data Processing	16
Step 2-3.a: Exon Level Statistical Filtration	17
Step 2-3.b: Gene Level Statistical Filtration	19
Step 2-4: Export Processed Profile (Optional)	20
Step 3: Feature Filtration	21
Step 3-1.a: Statistical Filtration (Exon Level)	21
Step 3-1.b: Statistical Filtration (Gene Level)	24
Step 3-2: Biological Filtration	25
Step 4: Gene List	29
Step 4-1: User-defined Gene List	29
Step 4-2: Gene Annotation	30
Step 4-3: Export Full Annotation (Optional)	31
Step 4-4: Export Table Information (Optional)	32
Step 4-5: Export *.egr for IGB (Optional)	33
Step 5: Graphic Presentation	35
Step 5.a: Graphic Presentation for Exon Level	35
Step 5.b: Graphic Presentation for Gene Level	
2. Environment Setting	39
2-1: Setting the Path of Meta Probeset Files	
2-2: Setting the Path of Database	40

0. Flowchart of easyExon

1. Alt-Splicing Study

Step 0: Input Data Format Selection

User needs to select the input data format. Two data formats are allowed:

- (i) CEL files
 Choose YES to launch Affymetrix Power Tools (APT), and follow the <u>Step</u>
 <u>1.a</u>.
- (ii) *.txt summary filesChoose NO to load *.txt summary files, and follow the <u>Step 1.b</u>.

exsyExon 1.0.3	
Launch APT 文字 Do you want to launch Affymetrix Power Tools to read *cel files? 夏田 夏田 夏	

Step 1: Data Preparation

Step 1.a: Get summary files by Affymetrix Power Tools (APT)

Before using easyExon to analyze exon arrays, user have to prepare Affymetrix Power Tools, corresponding library files, and *.CEL files. When these files are ready and corresponding directory paths are set, easyExon will launch APT to get the summary file that contains signals of each exon across all samples.

Data preparation:

- (i) Affymetrix Power Tools (APT) APT can be downloaded from the website: <u>http://www.affymetrix.com/support/developer/powertools/index.affx</u>
- (ii) Library files
 Library files for APT have to be in the same directory. Those library files can be downloaded from the website:
 http://www.affymetrix.com/support/technical/libraryfilesmain.affx

Here are the descriptions of library files.

Extension	Content	
*.pgf	File defining probe sets	
	E.g.: HuEx-1_0-st-v2.r2.pgf	
*.clf	File defining x, y <-> probe id conversion	
	E.g.: HuEx-1_0-st-v2.r2.clf	
*.bgp	File defining probes to be used for GC background	
	E.g.: HuEx-1_0-st-v2.r2.antigenomic.bgp	
*.ps	File specifying probe sets to summarize	
	E.g.: HuEx-1_0-st-v2.r2.dt1.hg18.core.ps	
*.mps	File containing meta probeset definitions.	
	File must contain a probeset_id column and a probeset_list column.	
	E.g.: HuEx-1_0-st-v2.r2.dt1.hg18.extended.mps	

(iii) Probe results files (CEL files)

Put all CEL files in the same directory. The CEL files in the same directory will be used to get summary files.

Directory path setting:

(i) Path of the APT

Select the path of APT which contains the "bin" directory.

🛃 easyExon 1.0.3		_ 🗆 🗙
<u>File</u> <u>Setting</u> <u>H</u> elp		
Alt-Splicing Study 1 Data Preparation	_Data Input	
	1. The path of Affymetrix Power Tools C. Program Files/Affymetrix Power Tools/apt-1.8.0 Select	
	2. The path of *.CEL files Select	
	3. The path of *.pgf, *.clf, *.bgp, *.ps, and *.mps files Select	
	4. Species Human Vrobeset class core vith Method rma-sketch	
	5. The path of output files Select	
	 Filter probesets based on DABG, retain summarized values if at least 0 out of 0 arrays have p-value ← 0.05 Log stabilization factor = 16 	
	Get summary files Submit-> Array Groupi	ng
J	J	

(ii) Path of CEL files

Select the directory which includes CEL files.

🕌 easyExon 1.0.3		<u>- 🗆 ×</u>
<u>File</u> Setting <u>H</u> elp		
Alt-Splicing Study 1 Data Preparation	Data Input 1. The path of Affymetrix Power Tools C.\Program Files\Affymetrix Power Tools\appt-1.8.0 Select 2. The path of *CEL files D.'work/examples\appt Select	
	3. The path of *.pgf, *.clf, *.bgp, *.ps, and *.mps files Select 4. Species Human Probeset class core with Method mma-sketch	
	 5. The path of output files Select 6. Filter probesets based on DABG, retain summarized values if at least 0 out of 0 arrays have p-value <= 0.05 7. Log stabilization factor = 16 	
	Get summary files Submit -> Array Groupin	ıg

(iii) Path of library files

Select the path of library files directory which includes *.pgf files, *.clf files, *.bgp files, *.ps files, and *.mps files.

🕌 easyExon 1.0.3		- 🗆 ×
<u>File</u> Setting <u>H</u> elp		
Alt-Splicing Study 1	Data Input-	
	1. The path of Affymetrix Power Tools C-Program Files/Affymetrix Power Tools/apt-1.8.0 Select	
	2. The path of *CEL files D/worklexamples/apt Select	
	3. The path of *.pgf, *.clf, *.bgp, *.ps, and *.mps files D.\work\ExamplesLibrary	
	4. Species Human 💌 Probeset class core 💌 with Method ma-sketch 💌	
	5. The path of output files Select	
	6. Filter probesets based on DABG, retain summarized values if at least 0 out of 0 arrays have p-value <= 0.05	
	7. Log stabilization factor = 16	
	Get summary files Submit-> Array Grou	ping

(iv) Select the species, probeset class and the method for getting summary files.

Species selection (Human, Rat, or Mouse)

2. The path of *.CEL file	: D:\work\examples\apt			Select
3. The path of *.pgf, *.ch	, *.bgp, *.ps, and *.mps files D:\work\Ex	camples'Library		Select
4 Species Human Human Rat	Probeset class core	with Method r	na-sketch	~
5. The path Mouse				Select

Probeset class selection (core, full, extended, or defined by user)

-Data Input	
1. The path of Affymetrix Power Tools C:\Program Files\Affymetrix Power Tools\apt-1.8.0	Select
2. The path of *.CEL files D:\work\examples\apt	Select
3. The path of *.pgf, *.clf, *.bgp, *.ps, and *.mps files D:\work\Examples\Library	Select
4. Species Human 💌 Probeset class core 💽 with Method Ima-sketch	-
extended	
5. The path of output files full defined by user	Select
6. Filter probesets based on DABG, retain summarized values if at least 0 out of 0 arrays have p-value <= 0.05	
7. Log stabilization factor = 16	

When user selects "defined by user," user needs to select the meta-probesets file location.

Meta-probesets file format:

The First row of the data contains "probeset_id", "transcript_cluster_id", and "probeset_list". The first column contains probeset_ids; the second column is transcript_cluster_id. The third column is probeset_list with corresponding transcript_cluster_id.

E.g.:

probeset_id<Tab>transcript_cluster_id<Tab>probeset_list<Tab>... 3096575<Tab>3096575<Tab>3096630 3096631 3096632<Tab>... 2949118<Tab>2949118<Tab>2949119 2949120 2949121 2949130<Tab>...

a Input ——		
1. The path	n of Affymetrix Power Tools CAProgram FilesAffymetrix Power Tools/apt-1.8.0	Select
2. The path	n of *.CEL files D:/work/examples/apt	Select
3. The path	n of *.pgf, *.clf, *.bgp, *.ps, and *.mps files D:/work\Examples\Library	Select
4. Species	Human Probeset class defined by user with Method ma-sketch]
Group p	robesets by D:/work/examples/HuEx-1_0-st-v2.r2.dt1.hg18.core.mps.txt	
5. The path	n of output files	Select
6. Filter pr	obesets based on DABG, retain summarized values if at least 0 out of 0 arrays have p-value <= 0.05	
7. Log stab	vilization factor = 16	

Method selection (rma-sketch or plier-gcbg-sketch)

Data mput

1.	The path of Affymetrix Power Tools C: Program Files\Affymetrix Power Tools\apt-1.8.0	Select
2.	The path of *.CEL files D:/work/examples/apt	Select
3.	The path of *.pgf, *.clf, *.bgp, *.ps, and *.mps files D:/work/Examples/Library	Select
4.	Species Human 💌 Probeset class core 💌 with Method ma-sketch	
	rma-sketch	
	plier-gobg-sketch	
5.	The path of output files	Select
6.	Filter probesets based on DABG, retain summarized values if at least 0 out of 0 arrays have p-value <= 0.05	
7.	Log stabilization factor = 16	

(v) Path of output files

Select the output directory for summary files

Select Select Select select p-value <= 0.05

Get summary files!!!

Note: It may take few minutes to several hours, please have patience.

🕌 easyExon 1.0.3		_ 🗆 ×
<u>File Setting H</u> elp		
Alt-Splicing Study 1 Data Preparation	Data Input	
	1. The path of Affymetrix Power Tools CAProgram Files/Affymetrix Power Tools/apt-1.8.0 Select	
	2. The path of *.CEL files D./work/examples/apt Select	
	3. The path of *.pgf, *.clf, *.bgp, *.ps, and *.mps files D:\work\ExamplesLibrary Select	
	4. Species Human 💌 Probeset class core 💌 with Method ma-sketch	
	5. The path of output files D:worklexamples/output	1
	6. Filter probesets based on DABG, retain summarized values if at least 0 out of 0 arrays have p-value <= 0.05	
	7. Log stabilization factor = 16	
	Get summary files Submit-> Array Grou	uping.

Filter probesets based on DABG, and set the log stabilization factor.

When the summary file is generated by APT, user can filter probesets based on DABG *p*-value. User can also set the log stabilization factor value. The summarized signal will add the factor before the log transformation. The default value is 16.

🛃 easyExon 1.0.3		_ 🗆 🗵
<u>File Setting H</u> elp		
Alt-Splicing Study 1 Data Proparation	Data Input 1. The path of Affymetrix Power Tools 2. The path of *CEL files D:work/examples/apt 3. The path of *.pgt, *.clf, *.bgp, *.ps, and *.mps files D:work/examples/Library Select	
	 4. Species Human Probest class core with Method mas-sketch 5. The path of output files D:/work/examples/output 6. Filter probests based on DABG, retain summarized values if at least 1 out of 2 arrays have p-value <= 0.05 7. Log stabilization factor 16 	uping
		1

Submit to <u>Step 2</u>!!!

Step 1.b: Load *.txt summary files

Select the Exon-level summary files.

Select the data format (Expression Console or Partek) of Exon-level summary files, and set the path of file.

Data format:

(i) **Expression Console**:

The First row of the data contains "probeset_id" and CEL names. The first column contains probeset_ids, and remaining columns are intensity of each CEL with corresponding probeset_id.

E.g.:

```
probeset_id<Tab>01_KL1.CEL<Tab>02_KL3.CEL<Tab>03_KL5.CEL<Tab>...
2315252<Tab>4.31<Tab>3.28<Tab>3.72<Tab>...
2315253<Tab>2.46<Tab>1.59<Tab>2.20<Tab>...
```

(ii) Partek:

The First row of the data contains "Filename" and probeset_ids. The first column contains CEL names, and remaining columns are intensity of each probeset_id with corresponding. CEL.

E.g.:

Filename<Tab>...<Tab>2315252<Tab>2315253<Tab>...

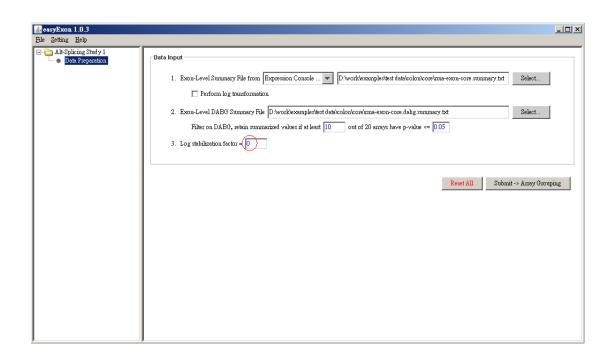
01_KL1.CEL<Tab>...<Tab>4.31<Tab>2.46<Tab>...

02_KL3.CEL<Tab>...<Tab>3.28<Tab>1.59<Tab>...

03_KL5.CEL<Tab>...<Tab>3.72<Tab>2.20<Tab>...

Osta Input 1. Exon-Level Summary File from Expression Console Proform log transformast Expression Console Partek 2. Exon-Level DAEG Summary File Select Filter on DAEG, retain summarized values if at least 0 out of 0 arrays have p-value <= 0.05 3. Log stabilization factor = 16 Reset All

When user needs to perform log transformation on data, check the Perform log transformation.


seasyExon 1.0.3		_ 🗆 🗙
<u>File Setting H</u> elp		
Alt-Splicing Study 1 Data Preparation	Data Input	
	1. Exon-Level Summary File from Expression Console 💌 D'work/examples/test data/colon/core/sma-exon-core summary.txt	
	Erform log transformation Exon-Level DABG Summary File Select	
	Filter on DABG, retain summarized values if at least 0 out of 0 arrays have p-value <= 0.05	
	3. Log stabilization factor = 16	
	Reat All Submit -> Array Group	ing

When user selects Expression Console, user needs to select the path of Exon-level DABG summary files and set probesets filter based on DABG *p*-value.

File Setting Help Data Input I. Exon-Level Summary File from Expression Console Perform log transformation (2) Exon-Level DABG Summary File D/work/example/sitest data/colon/core/trma-exon-core dabg summary bt Select Filter on DABG, retain summarized values if at least 10 out of 20 arrays have p-value <= 0.05 3. Log stabilization factor = 16	
Data Preparation Data Preparation I. Exon-Level Summary File from Expression Console Deta Preparation I. Exon-Level Summary File from Expression Console Perform log transformation (2) Exon-Level DABG Summary File D: work/examples/test data/colon/core/trans-exon-core dabg summary.txt Select. Filter on DABG, retain summarized values if at least 10 out of 20 arrays have p-value <= 0.05	
Reset All Submit-> Array C	rouping

Set the log stabilization factor

When user selects Expression Console or Custom format, user needs to set the log stabilization factor. The summarized signal will add the factor before the log transformation. The default value is 16.

Submit to <u>Step 2</u>!!!

🛃 easyExon 1.0.3		_ 🗆 ×
<u>File Setting H</u> elp		
	Data Input 1. Exon-Level Summary File from Expression Console ▼ □ Perform log transformation 2. Exon-Level DABG Summary File D:work/examples/itest data/colon/core/trma-exon-core dabg.summary.txt Filter on DABG, retain summarized values if at least 10 out of 20 arrays have p-value <= 0.05 3. Log stabilization factor = 0	

Step 2: Array Grouping and Data Processing

Step 2-1: Array Grouping

Array samples are assigned into two groups based on experimental design. The group name can be arbitrarily modified for easy recognition. For samples that don't want to be included in the latter analyses, they can be assigned into the "IGNORE" group.

Alt-Splicing Study 1 	Array Grouping					
 Anay Grouping 		TOTAL 20 ARRAYS \ 2 GROUPS	т	N		
		01_1T.CEL	o	0	O IGNORE	
		02_1N.CEL	0	o	O IGNORE	
		03_2T.CEL	۲	0	O IGNORE	
		04_2N.CEL	0	۲	O IGNORE	
		05_3T.CEL	o	0	O IGNORE	
		06_3N.CEL	0	۲	O IGNORE	
		07_4T.CEL	œ	0	O IGNORE	
		08_4N.CEL	0	۲	O IGNORE	
		09_5T.CEL	œ	0	O IGNORE	
		10_5N.CEL	0	۲	O IGNORE	
		11_6T.CEL	o	0	O IGNORE	
		12_6N.CEL	0	۲	O IGNORE	
		13_7T.CEL	o	0	C IGNORE	
		14_7N.CEL	0	۲	O IGNORE	
		15_8T.CEL	©	0	O IGNORE	
		16_8N.CEL	0	۲	O IGNORE	
		17_9T.CEL	o	0	O IGNORE	
		18_9N.CEL	0	©	O IGNORE	
		-	-	_		

Step 2-2: Meta Probeset List Information

The information needed in this section is used for calculation of splicing index.

Step 2-2-1: Select Gene-level summary file

User who selects Expression Console at the <u>Step 1.b</u> needs to set the path of gene-level summary file. Otherwise, skip this step.

easyExon 1.0.3		
<pre> essyExon 1.0.3 Fuls Setting Help Alt-Splicing Study 1</pre>	Meta Probeset List Gene-Level Summary File from Diwork/example/sted data/colon/core/sma-gene-core summary bt Species Human Probeset class core Data Processing Filtration type Exon Level Limit Probeset number from 4 to 40 By V Affymetrix MIDAS Partek AS_ANOVA PAC (Pattern based Correlation) for Exon	
	Data Preparation <- Back Export Processed Profile Submit-> Feature Filtration	m

Step 2-2-2: Select meta probeset definitions

User who chooses NO at the <u>Step 0</u> needs to select the Species and Probeset class for meta probeset definitions. Otherwise, skip this step.

Species selection (Human, Rat, or Mouse)

Meta Probeset List		
Gene-Level Summary File from D	D:/work/examples/test data/colon/core/ima-gene-core.summary.txt Select	
Species Human	Probeset class core	
Human		
Rat		
Mouse		

Probeset class selection (core, full, extended, or defined by user)

Meta Probeset List	
Gene-Level Summary File from D:/work/examples/test data/colon/core/ima-gene-core.summary.txt	Select
Species Human Probeset class core	
core	
extended	
full	
defined by user	

When user selects "defined by user," user needs to select the meta-probesets file location.

Meta-probesets file format:

The First row of the data contains "probeset_id", "transcript_cluster_id", and "probeset_list". The first column contains probeset_ids; the second column is transcript_cluster_id. The third column is probeset_list with corresponding transcript_cluster_id.

E.g.:

probeset_id<Tab>transcript_cluster_id<Tab>probeset_list<Tab>... 3096575<Tab>3096575<Tab>3096630 3096631 3096632<Tab>... 2949118<Tab>2949118<Tab>2949119 2949120 2949121 2949130<Tab>...

Meta Probeset List	
MOUT TODOOU LIOU	
Gene-Level Summary File from D:/work/examples/test data/colon/core/sma-gene-core.summary.txt	Select
1	
Species Human 🗸 🖉 🖓 🐨 💌	>
Group probesets by D:/work/examples/Library/HuEx-1_0-st-v1.r2.dt1.hg18.core.mps	Select
crosp processes by Dimensionappendicted) in the relation of th	

Step 2-3: Data Processing

There are two types of differential expression filtrations in easyExon: Exon level and Gene level.

- (i) Exon Level Choose Exon Level and follow the <u>Step 2-3.a.</u>
- (ii) Gene LevelChoose Gene Level and follow the <u>Step 2-3.b</u>.

easyExon 1.0.3 File Setting Help		
Control Contro Control Control Control Control Control Control Control Control Co	Meta Probeset List Gene-Level Summary File from D:/work/examples/test data/colon/core/inma-gene-core.summary.bd Select Species Human Probeset class core	×
	Data Processing Pittöbion type Exon Level Limit Probes Gene Level By Affymetrix MIDAS Partek AS_ANOVA PAC (Pattern based Correlation) for Exon	
	Data Preparation <- Back Export Processed Profile Submit-> Feature Filtration	n

Step 2-3.a: Exon Level Statistical Filtration

Before performing the statistical fliration, user sets the limitation number of probesets in a transcript cluster. For the transcript cluster with probesets greater than the setting number, only the setting number of probesets will be included in the latter analysis.

sasyExon 1.0.3		
<u>File</u> <u>Setting</u> <u>H</u> elp		
Constraint Study 1 Constraint Study	Meta Probeset List Gene-Level Summary File from D:work/examples/test data/colon/core/uma-gene-core.summary.bd Select Species Human Probeset class core	
	Data Processing Filtration type Exon Level Limit Probest number from 4 to 40 By V Affymetrix MIDAS Partek AS_ANOVA PAC (Pattern based Correlation) for Exon	
	Data Preparation <- Back Export Processed Profile Submit -> Feature Fultration	on _

There are three statistical methods for Exon level filtration in easyExon: Affymetrix MIDAS (<u>Mi</u>croarray <u>D</u>etection of <u>A</u>lternative <u>S</u>plicing), Partek AS ANOVA, and PAC (<u>Pa</u>ttern-Based <u>C</u>orrelation) for Exon. User can use multiple selections to choose the more than one method at the same time.

(i) Affymetrix MIDAS

Default selection for statistical filtration. No other information is needed.

(ii) Partek AS ANOVA

User needs to set the path of AS ANOVA file, and sets the attributes of Transcript id and *p*-values from attribute list, which is the first row of the data, and each column is an attribute. Attribute list differs from AS ANOVA files.

easyExon 1.0.3		
<u>File Setting H</u> elp		
	Meta Probeset List Gene-Level Summary File from D'work/examples/test data/colon/core/uma-gene-core summary.bt Species Human Probeset class core	
	Data Processing Filtration type Exon Level Limit Probeset number from 4 to 20 By 🔽 Affymetrix MIDAS 🔽 Partek AS_ANOVA 📄 PAC (Pattern based Correlation) for Exon	
	Loading AS_ANOVA from: D:/world/example/rms-exon-core.summary_processed_ASANOVA.bt Transcript id # Probe Sets p_value (for p_value (for p_value (altern p-value (altern p-value (for p-value (attribute

(iii) PAC (Pattern based correlation) for Exon No other information is needed.

Last, go to the <u>Step 2-4</u>.

Step 2-3.b: Gene Level Statistical Filtration

easyExon will perform t-test filtration on gene level in this step. No other information is needed.

🛃 easyExon 1.0.3					
<u>File</u> <u>Setting</u> <u>H</u> elp					
Alt-Splicing Study 1 Data Preparation	15_8T.CEL	©	0	C IGNORE	<u> </u>
Array Grouping	16_8N.CEL	0	o	O IGNORE	
	17_9T.CEL	۲	0	O IGNORE	
	18_9N.CEL	o	۲	O IGNORE	
	19_10T.CEL	۲	0	O IGNORE	
	20_10N.CEL	c	۲	O IGNORE	
	Meta Probeset List				
	Gene-Level Summary File from :k\Pro	nientriesen Funn relatedievenn	nlecitect datalonion	nalionna, cana coma commanas test	Select
			-		N01001
	Species Human	Probeset class	core	•	
	Defe Deservation				
	Data Processing				
	Filtration type Gene Level		•		
	By t-test				
		Data Prepar	ration <- Back	Export Processed Profile	Submit -> Feature Filtration
	J				<u> </u>

Step 2-4: Export Processed Profile (Optional)

Export the processed file with log stabilization.

🕌 easyExon 1.0.3		
<u>File</u> Setting <u>H</u> elp		
Alt-Splicing Study 1 Alt-Splicing Study 1 Ant Preparation Ant Preparation Antay Grouping	Meta Probeset List Gene-Level Summary File from KVProjects/easyExon related/examples/stest data/colon/core/smargene-core summary.txt Select Species Human Probeset class core	
	Data Processing Filtration type Exon Level Limit Probeset number from 4 to 40 By V Affymetrix MIDAS Partek AS ANOVA PAC (Pattern based Correlation) for Exon	
	EY M Allymetrix MIDAS Partek AS_ANOVA PAC (ratem desed Correlation) for Exon	
	Data Preparation <- Back Export Processed Profile Submit -> Feature Filtrat	ion

Submit to <u>Step 3</u>!!!

easyExon 1.0.3 File Setting Help		<u>_ </u>
<u>rite Setting Heip</u> Alt-Splicing Study 1 □ → Alt-Splicing Study 1 □ → Bak Preparation ↓ ◆ <u>Arrey Grouping</u>	Meta Probeset List Gene-Level Summary File from kiProjectivesyExon related/examples/test data/colon/core/uma-gene-core.summary.txt Species Human Probeset class core Data Processing	
	Filtration type Exon Level	
	Data Preparation <- Back Export Processed Profile Submit -> Feature Filtration	

Step 3: Feature Filtration

When user chooses Exon Level at the <u>Step 2-3.a</u>, please follow the <u>Step 3-1.a</u>. Otherwise, please follow the Step3-1.b.

Step 3-1.a: Statistical Filtration (Exon Level)

When user chooses method(s) for statistical filtration at the <u>Step 2-3.a</u>, user needs to set the criteria for probeset filtration.

easyExon 1.0.3 File Setting Help		- 🗆 ×
Alt-Splicing Study 1 Data Preparation Array Grouping figure 4 (10) figure 4 (10) figure 4 (10)	Statistical Filtration Intersection Affymetrix MIDAS: p-value <= 0.01	
	Biological Filtration Add (e.g. 7165, signal transduction) Delete GO Biological Process Gene Symbol or Representative Accession OR	

First, user needs to set the fold change.

Statie	Statistical Filtration	
Juna		
	✓ fold change >= 1.50	
	Intersection	
	\checkmark Affymetrix MIDAS: p-value <= 0.01	
	\checkmark AS_ANOVA: p-value (fold change) >= 0.05 AND p-value (alternative splicing) < 0.05	
	\checkmark PAC for Exon: correlation coefficient(s) < 0.50	

When user chooses Affymetrix MIDAS at the <u>Step 2-3.a</u>, user needs to set the *p*-value (calculated by MIDAS).

Statistical Filtration
✓ fold change >= 1.50
Intersection
Affymetrix MIDAS: p-value <= 0.01
▼ AS_ANOVA: p-value (fold change) >= 0.05 AND p-value (alternative splicing) < 0.05
▶ PAC for Exon: correlation coefficient(s) < 0.50

When user chooses AS_ANOVA at the <u>Step 2-3.a</u>, user needs to set the *p*-value for fold change and *p*-value for alternative splicing. Otherwise, skip this step.

	Natistical Filtration		
oracio			
	\checkmark fold change >= 1.50		
	Intersection		
	\checkmark Affymetrix MIDAS: p-value <= 0.01		
	✓ AS_ANOVA: p-value (fold change) >= 0.05 AND p-value (alternative splicing) < 0.05		
	PAC for Exon: correlation coefficient(s) < 0.50		

When user chooses PAC for Exon at the <u>Step 2-3.a</u>, user needs to set the dissimilarity value of correlation coefficients (the default value is less than 0.5).

Statistical Filtration
\checkmark fold change >= 1.50
Intersection
Affymetrix MIDAS: p-value <= 0.01
AS_ANOVA: p-value (fold change) >= 0.05 AND p-value (alternative splicing) < 0.05
\checkmark PAC for Exon: correlation coefficient(s) <

When user chooses more than one probeset filtration methods, user can select different ways to combine the filtered results.

Statis	rtical Filtration
	✓ fold change >= 1.50
-	Intersection
\sim	Intersection Union
	▼ AS_ANOVA: p-value (fold change) >= 0.05 AND p-value (alternative splicing) < 0.05
	✓ PAC for Exon: correlation coefficient(s) < 0.50
	▼ TAC IOLEXON. CONFIRMION COEMICIENT(S) < 0.00

User can jump to the <u>Step 3-2</u>.

Step 3-1.b: Statistical Filtration (Gene Level)

User sets the significant level of *p*-value (calculated by *t*-test) and the minimum value of fold change.

Eile Setting Help Image: Setting Help Image: Setting Help Image: Setting Help Image: Setting Help Image: Setting Help Image: Setting Help Image: Setting Help Image: Setting Help Image: Setting Help Image: Setting Help Image: Setting Help Image: Setting Help Image: Setting Help Image: Setting Help	
E Catalistical Fitration	
isign transcripts (I) p-value <= 0.01 AND fold change >= 1.50 Biological Filtration Add (e.g. 7165, signal transduction) Delete GO Biological Process <= contains Gene Symbol or Representative Accession OR <= process list (separated by a new line) I post from a file / paste a list (separated by a new line) I post from a file / paste a list (separated by a new line)	
Array Grouping <- Back Submit-> Gene his	st

Step 3-2: Biological Filtration

Transcript cluster filtration tool aims to help user narrow down the number of transcripts based on (i) GO term and (ii) gene name or accession number. User can add queries for transcript cluster filtration.

<mark>≝ easyExon 1.0.3</mark> File Setting Help		- 🗆 🗙
Comparison of the second study of the sec	Intersection Affymetrix MIDAS: p-value <= 0.01 AS_ANOVA: p-value (fold change) >= 0.05 AND p-value (alternative splicing) < 0.05 PAC for Exon: correlation coefficient(s) < 0.50 Biological Filtration	
	Add (e.g. 7165, signal transduction) Delete GO Biological Process Gene Symbol or Representative Accession OR	
< >	Array Crouping « Back Submit -> Genz	e list

(i) Query by GO term

User can choose the GO term (e.g. Biological Process), and type the key word in the text field (e.g. signal transduction).

Biological Filtra	lion
Add	(e.g. 7165, signal transduction)
Delete	GO Biological Process contains signal transduction
	GO Biological Process Ge Cellular Component esssion
OR 💌	GO Molecular Function Select (e.g.NM_153254, B3GALT6)
	upload from a file / paste a list (separated by a new line)
	-

When there are more than one queries, user may click the "Add" button to add a new GO query and choose "AND" or "OR" for the query. Ten queries are allowed.

Biological Filtration
Add (e.g. 7165, signal transduction)
Delete GO Biological Process 💌 contains signal transduction OR 💌
Delete GO Biological Process 💌 contains
Gene Symbol or Representative Accession OR Select (e.g.NM_153254, B3GAL T6)
upload from a file / paste a list (separated by a new line)

When user wants to delete one query, user may click the "Delete" button in front of the query.

Biological Filtration	N
Delete	e.g. 7165, signal transduction) GO Biological Process contains signal transduction GO Biological Process contains contains
OR V	ene Symbol or Representative Accession Select (e.g.NM_153254, B3GALT6) (e.g.NM_153254, B3GALT6)

(ii) User can query Gene Symbols or Accession numbers of interest by uploading a file or using text area.

When user sets the GO query above, user may choose "AND" or "OR" to combine with Gene Symbol's queries.

Biological Fitration
Add (e.g. 7165, signal transduction)
Delete GO Biological Process 💌 contains signal transduction
Gene Symbol or Representative Accession
OR Select (e.g.NM_153254, B3GAL T6)
upload from a file / paste a list (separated by a new line)

Type the key words in the text file or the text area below. Each key word is separated by a new line.

Bi	ological Filtra	tion	
	Add	(e.g. 7165, signal transduction)	
	Delete	GO Biological Process 💌 contains signal transduction	
		Gene Symbol or Representative Accession	
	OR 💌	Select (e.g.NM_153254, B3GALT6) - upload file h	ere
		upload from a file / paste a list (separated by a new line)	
		NM_153254	
		B3GALT6	
		← text area	

Submit to <u>Step 4</u>!!!

🕌 easyExon 1.0.3		_ 🗆 ×
<u>File Setting H</u> elp		
File Setting Hep □ Alt-Splking Study 1 □ □ □ Dash Preparation □ □ Array Grouping □ □ 15197 transcripts (10	Intersection Affymetrix MIDAS: p-value <= 0.01 AS_ANOVA: p-value (fold change) >= 0.05 AND p-value (alternative splicing) < 0.05 PAC for Exon: correlation coefficient(s) < 0.50 Biological Fitration Add (e.g. 7165, signal transduction) Delete GO Biological Process contains Gene Symbol or Representative Accession OR Gene Symbol or Representative Accession Upload from a file / parte a list (separated by a new line) Upload from a file / parte a list (separated by a new line)	
× >	Array Grouping <- Back Submit-> Ge	ne list

Step 4: Gene List

Step 4-1: User-defined Gene List

Further select genes of interest. Genes in the narrowed down list will be displayed with log scale intensity in the <u>Step 5.</u> The corresponding number of selected genes will be shown in highlighted in the directory tree of the left panel.

User can use the "Select All" or "Deselect All" button to further selection.

t-Splicing Study 1 Data Preparation	User-o	lefined Gene	List					
Array Grouping 15197 transcripts (10	Se	lect All	Deselect All					
* (arey		Transcript ID	Gene Title	Gene Symbol	Accession	Filtration	p-value(MI	Т
		2515933	sterile alpha motif and leucine zipper c	ZAK	NM_016653	MIDAS	0.017025363	- 4
		3556990	jub, ajuba homolog (Xenopus laevis)	ЛЛВ	NM_032876	MIDAS	0.018647507	T
		3666366	cadherin 3, type 1, P-cadherin (placental)	CDH3	NM_001793	MIDAS	0.019335203	1
		3573870	deiodinase, iodothyronine, type II	DIO2	NM_001007	MIDAS	0.019963069	
		2891556	forkhead box Q1	FOXQ1	NM_033260	MIDAS	0.02053855	1
		3569814	actinin, alpha 1	ACTN1	NM_001102	MIDAS	0.021736003	1
		3351711	forkhead box R1	FOXR1	NM_181721	MIDAS	0.022765934	1
		3939470	matrix metallopeptidase 11 (stromelysi	MMP11	NM_005940	MIDAS	0.02387486	1
	A	2652675	epithelial cell transforming sequence 2	ECT2	NM_018098	MIDAS	0.024024887	1
		3009399	heat shock 27kDa protein 1	HSPB1	NM_001540	MIDAS	0.024599742	1
		3049025	transforming growth factor beta regulat	TBRG4	NM_199122	MIDAS	0.025042612	
	T P	2842624	protocadherin LKC	PCLKC	NM_017675	MIDAS	0.026716486	٦.
		3110317	collagen triple helix repeat containing 1	CTHRC1	NM_138455	MIDAS	0.026852168	1
		3020343	met proto-oncogene (hepatocyte growt	MET	NM_000245	MIDAS	0.026971756	1
		2692319	adenylate cyclase 5	ADCY5	NM_183357	MIDAS	0.027018046	1
		3275922	protein kinase C, theta	PRKCQ	NM_006257	MIDAS	0.027054647	1
		2451593	myosin binding protein H	MYBPH	NM_004997	MIDAS	0.027235415	1
		3913525	death inducer-obliterator 1	DIDO1	NM_033081	MIDAS	0.027331404	1
		3448428	chromosome 12 open reading frame 11	C12orf11	NM_018164	MIDAS	0.027341785	1
		3934245	cystatin B (stefin B)	CSTB	NM_000100	MIDAS	0.02773845	1
		3653677	aquaporin 8	AQP8	NM_001169	MIDAS	0.027962223	1
		3432030	acyl-Coenzyme A dehydrogenase famil	ACAD10	NM_025247	MIDAS	0.02830165	1
		3047581	inhibin, beta A (activin A, activin AB a	INHBA	NM_002192	MIDAS	0.028400417	1
		3902489	BCL2-like 1	BCL2L1	NM_001191	MIDAS	0.028543407	1
		3758510	ets variant gene 4 (E1A enhancer bindi	ETV4	NM_001986	MIDAS	0.029130163	

Step 4-2: Gene Annotation

Note: User who chooses "defined by user" for probeset class at the <u>Step 1.a</u> or the <u>Step 2-2-2</u> needs to skip this step. In addition, user who chooses "Gene Level" at the <u>Step 2-3</u> skips this step, too.

User selects the gene annotation definition(s) for graphic presentation.

3351711 3939470 2652675 ✓ 3009399 ✓ 3049025			NM_181721	MIDAS	0.022765934	
2652675 3 009399	epithelial cell transforming sequence 2		3134 005040			
3009399	epithelial cell transforming sequence 2		NM 005940	MIDAS	0.02387486	
	best shock 27kDs protein 1	. ECT2	NM 018098	MIDAS	0.024024887	
3049025		HSPB1	NM 001540	MIDAS	0.024599742	
	transforming growth factor beta regulat	. TBRG4	NM_199122	MIDAS	0.025042612	
2842624	protocadherin LKC	PCLKC	NM_017675	MIDAS	0.026716486	
3110317	collagen triple helix repeat containing 1	CTHRC1	NM_138455	MIDAS	0.026852168	
3020343	met proto-oncogene (hepatocyte growt	. MET	NM_000245	MIDAS	0.026971756	
2692319	adenylate cyclase 5	ADCY5	NM 183357	MIDAS	0.027018046	
3275922	protein kinase C, theta	PRKCQ	NM_006257	MIDAS	0.027054647	
2451593	myosin binding protein H	MYBPH	NM_004997	MIDAS	0.027235415	
3913525	death inducer-obliterator 1	DIDO1	NM 033081	MIDAS	0.027331404	
3448428	chromosome 12 open reading frame 11	C12orf11	NM 018164	MIDAS	0.027341785	
3934245	cystatin B (stefin B)	CSTB	NM_000100	MIDAS	0.02773845	
3653677	aquaporin 8	AQP8	NM 001169	MIDAS	0.027962223	
3432030	acyl-Coenzyme A dehydrogenase famil.	ACAD10	NM 025247	MIDAS	0.02830165	
3047581	inhibin, beta A (activin A, activin AB a	. INHBA	NM_002192	MIDAS	0.028400417	
3902489	BCL2-like 1	BCL2L1	NM 001191	MIDAS	0.028543407	
3758510	ets variant gene 4 (E1A enhancer bindi	ETV4	NM 001986	MIDAS	0.029130163 👻	11
Gene Annotation	ensGene 🗌 knownGene					
		Export F			· ·	
	2692319 3275922 2451593 9313525 3448428 3933425 3334245 3353677 3432030 30758510	2692319 adenylate cyclase 5 2375922 protein Kinase C, theta 2451593 moyain binding protein H 3913525 death inducer-obligation 1 34449428 chromosome 12 open reading frame 11 3934245 cystain B (tetfin B) 3653677 aquaporin 8 343203 acyl-consyme A dehydrogenase famil. 3047581 inhibin, beta A (activin A, activin AB a. 3602489 BCL2-like 1 3758510 ets variant gene 4 (E1A enhancer bindi)	2692319 adenylate cyclase 5 ADCVS 3275922 protein Kinase C, theta PRKCQ 2451593 myosin binding protein H MYBPR 3913525 desth inducer-obliterator 1 DIDO1 3448428 chromosome 12 open reading frame 11 C120711 33424242 cystatin B (stefin B) CSTB 3353677 aquaporin 8 AQPB 2432030 acyl-Coenzyme A dehydro genase framil. ACAD10 3047581 inhubin, beta A (activin A, activin A a	2692319 adenylate cyclase 5 ADCY5 NM_083357 2375922 protein kinase c, theta PRKCQ NM_006257 2451593 myosin binding protein H MYBPH NM_004097 3913525 death inducer-obligendor 1 DIDO1 NM_001001 36353677 equeporin 8 AQP8 NM_001169 3432030 ext/-comzyne A delydrogenase famil ACAB1 MM202192 3902499 ECL2-like 1 BCL2L1 NM_001986 Gene Annotation Export Foll Annotation	2692319 adenylate cyclas 5 ADCY5 NM_183357 MIDAS 2375922 protein kinase C, theta PRKCQ NM_006257 MIDAS 2451593 myosin binding protein H MYBPH NM_004997 MIDAS 3913525 death inducer-oblightsator 1 DIDO1 NM_004979 MIDAS 3913525 death inducer-oblightsator 1 DIDO1 NM_018164 MIDAS 39448428 cystatin B (stefin B) CSTB NM_00100 MIDAS 3934245 cystatin B (stefin B) CSTB NM_00100 MIDAS 3653677 squaporin 8 AQ98 NM_001169 MIDAS 34342030 scylcorayme A deplotgenase famil ACAD10 NM_025247 MIDAS 3047581 inhubin, beta A (activin AB e INHBA NM_001190 MIDAS 3024499 BCL2-like 1 BCL2L1 NM_001906 MIDAS 3758510 ets variant gene 4 (E1A enhancer bindi ETV4 NM_001906 MIDAS Gene Annotation Export Full Annotation Export table information F	□ 2692319 sderylste cyclos 5 ADCY5 NM_183357 MIDAS 0.0270180461 □ 3275922 protein kinase C, theta PRKCQ NM_006257 MIDAS 0.027034647 □ 2451593 myosin bining protein H MYPPR NM_004997 MIDAS 0.027235415 □ 3913525 death inducer-obliterator 1 DIDO1 NM_03091 MIDAS 0.027235415 □ 3913525 death inducer-obliterator 1 DIDO1 NM_018064 MIDAS 0.027235415 □ 3934245 cystatin B CSTB NM_001190 MIDAS 0.02723741785 □ 394245 cystatin B CsTB NM_001100 MIDAS 0.02773845 □ 3653677 squaponia 8 AOP8 NM_001190 MIDAS 0.02297962223 □ 3423030 squaponia 8 AOP8 NM_001292 MIDAS 0.022840147 □ 3902469 BCL2-like 1 BCL2/L1 NM_001926 MIDAS 0.0229130163 ▼ Gene Annotation

Step 4-3: Export Full Annotation (Optional)

User may export full annotation by click the button "Export Full Annotation."

Alt-Splicing Study 1	3351711	forkhead box R1	FOXR1	NM 181721	MIDAS	0.022765934	
🛅 Data Preparation	3939470			NM_005940	MIDAS	0.02387486	
🖻 🛅 Array Grouping	2652675	epithelial cell transforming sequence 2		NM 018098	MIDAS	0.024024887	-
🗄 🛅 15197 transcripts (10	3009399	heat shock 27kDa protein 1	HSPB1	NM 001540	MIDAS	0.024599742	-
	3049025	transforming growth factor beta regulat.		NM 199122	MIDAS	0.025042612	
	2842624	protocadherin LKC	PCLKC	NM 017675	MIDAS	0.026716486	1
	3110317	collagen triple helix repeat containing 1	CTHRC1	NM 138455	MIDAS	0.026852168	1
	3020343	met proto-oncogene (hepatocyte growt	MET	NM 000245	MIDAS	0.026971756	
	2692319	adenylate cyclase 5	ADCY5	NM 183357	MIDAS	0.027018046	
	3275922	protein kinase C, theta	PRKCQ	NM 006257	MIDAS	0.027054647	1
	2451593	myosin binding protein H	MYBPH	NM_004997	MIDAS	0.027235415	
	3913525	death inducer-obliterator 1	DIDO1	NM_033081	MIDAS	0.027331404	
	3448428	chromosome 12 open reading frame 11	C12orf11	NM_018164	MIDAS	0.027341785	1
	3934245	cystatin B (stefin B)	CSTB	NM_000100	MIDAS	0.02773845	
	3653677	aquaporin 8	AQP8	NM_001169	MIDAS	0.027962223	1
	3432030	acyl-Coenzyme A dehydrogenase famil.	ACAD10	NM_025247	MIDAS	0.02830165	1
	3047581	inhibin, beta A (activin A, activin AB a	INHBA	NM_002192	MIDAS	0.028400417	1
	3902489	BCL2-like 1	BCL2L1	NM_001191	MIDAS	0.028543407	1
	3758510	ets variant gene 4 (E1A enhancer bindi	ETV4	NM_001986	MIDAS	0.029130163	-
	Gene Annotation	ensGene 🗌 knownGene					
			Export H	ull Annotation	Export table information	Export *.egr for IGE	3

Step 4-4: Export Table Information (Optional)

User may export table information by click the button "Export table information."

Alt-Splicing Study 1	Í	3351711	forkhead box R1	FOXR1	NM 181721	MIDAS	0.022765934	
🛅 Data Preparation	后	3939470	matrix metallopeptidase 11 (stromelysi	MMP11	NM 005940	MIDAS	0.02387486	
🖻 🛅 Array Grouping	Ē	2652675	epithelial cell transforming sequence 2		NM 018098	MIDAS	0.024024887	
🖻 🧰 15197 transcripts (10	V	3009399	heat shock 27kDa protein 1	HSPB1	NM 001540	MIDAS	0.024599742	
(279)		3049025	transforming growth factor beta regulat.	. TBRG4	NM 199122	MIDAS	0.025042612	
		2842624	protocadherin LKC	PCLKC	NM 017675	MIDAS	0.026716486	
		3110317	collagen triple helix repeat containing 1	CTHRC1	NM_138455	MIDAS	0.026852168	
		3020343	met proto-oncogene (hepatocyte growt	. MET	NM_000245	MIDAS	0.026971756	
		2692319	adenylate cyclase 5	ADCY5	NM_183357	MIDAS	0.027018046	
		3275922	protein kinase C, theta	PRKCQ	NM_006257	MIDAS	0.027054647	
		2451593	myosin binding protein H	MYBPH	NM_004997	MIDAS	0.027235415	
		3913525	death inducer-obliterator 1	DIDO1	NM_033081	MIDAS	0.027331404	
		3448428	chromosome 12 open reading frame 11	C12orf11	NM_018164	MIDAS	0.027341785	
		3934245	cystatin B (stefin B)	CSTB	NM_000100	MIDAS	0.02773845	
		3653677	aquaporin 8	AQP8	NM_001169	MIDAS	0.027962223	
		3432030	acyl-Coenzyme A dehydrogenase famil.	ACAD10	NM_025247	MIDAS	0.02830165	
		3047581	inhibin, beta A (activin A, activin AB a	. INHBA	NM_002192	MIDAS	0.028400417	
		3902489	BCL2-like 1	BCL2L1	NM_001191	MIDAS	0.028543407	
		3758510	ets variant gene 4 (E1A enhancer bindi	. ETV4	NM_001986	MIDAS	0.029130163 -	-
		Annotation - efGene 🔲 (ansGene 🗌 knownGene					
				Export	Full Annotation	Export table information	Export *.egr for IGB	

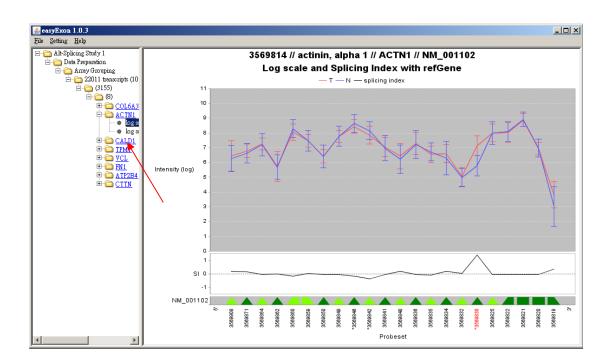
Step 4-5: Export *.egr for IGB (Optional)

User may export a *.egr file for Integrated Genome Browser (IGB) by clicking the button "Export *.egr for IGB."

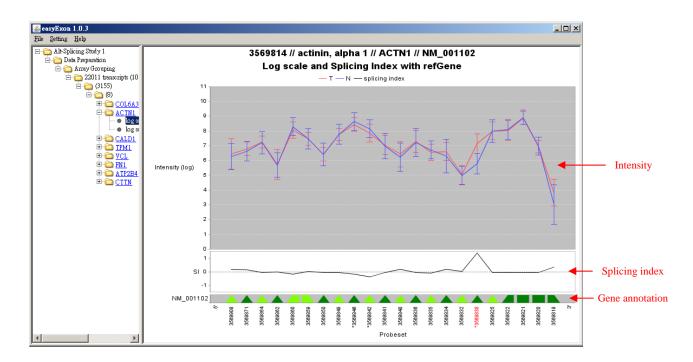
Alt Calls in a Chadra 1		· · ·	1	-			-
Alt-Splicing Study 1	3351711	forkhead box R1	FOXR1	NM_181721	MIDAS	0.022765934	
- Data Preparation	3939470			NM_005940	MIDAS	0.02387486	
🖻 🧰 Array Grouping	2652675	epithelial cell transforming sequence 2		NM_018098	MIDAS	0.024024887	
	3009399	heat shock 27kDa protein 1	HSPB1	NM_001540	MIDAS	0.024599742	
🔶 (279)	3049025	transforming growth factor beta regulat		NM_199122	MIDAS	0.025042612	
	2842624	protocadherin LKC	PCLKC	NM_017675	MIDAS	0.026716486	
	3110317	collagen triple helix repeat containing 1	CTHRC1	NM_138455	MIDAS	0.026852168	
	3020343	met proto-oncogene (hepatocyte growt		NM_000245	MIDAS	0.026971756	
	2692319	adenylate cyclase 5	ADCY5	NM_183357	MIDAS	0.027018046	
	3275922	protein kinase C, theta	PRKCQ	NM_006257	MIDAS	0.027054647	
	2451593	myosin binding protein H	MYBPH	NM_004997	MIDAS	0.027235415	
	3913525	death inducer-obliterator 1	DIDO1	NM_033081	MIDAS	0.027331404	
	3448428	chromosome 12 open reading frame 11	C12orf11	NM_018164	MIDAS	0.027341785	
	3934245	cystatin B (stefin B)	CSTB	NM_000100	MIDAS	0.02773845	
	3653677	aquaporin 8	AQP8	NM_001169	MIDAS	0.027962223	
	3432030	acyl-Coenzyme A dehydrogenase famil.	. ACAD10	NM_025247	MIDAS	0.02830165	
	3047581	inhibin, beta A (activin A, activin AB a	. INHBA	NM_002192	MIDAS	0.028400417	
	3902489	BCL2-like 1	BCL2L1	NM_001191	MIDAS	0.028543407	
	3758510	ets variant gene 4 (E1A enhancer bindi	ETV4	NM_001986	MIDAS	0.029130163	-
	Gene Annotation− ▼ refGene □ e	nsGene 🔲 knownGene					
			Export F	full Annotation	Export table information	Export *.egr for IGB	>

Submit to <u>Step 5</u>!!!

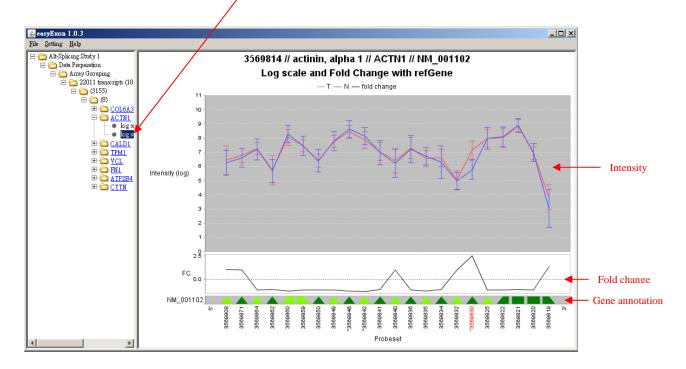
Alt-Splicing Study 1	3351711	forkhead box R1	FOXR1	NM_181721	MIDAS	0.022765934	
- 🛅 Data Preparation	3939470	matrix metallopeptidase 11 (stromelysi		NM 005940	MIDAS	0.02387486	
😑 🗀 Array Grouping	2652675	epithelial cell transforming sequence 2		NM 018098	MIDAS	0.024024887	
🗄 🦳 15197 transcripts (10	3009399	heat shock 27kDa protein 1	HSPB1	NM 001540	MIDAS	0.024599742	
···· (279)	3049025	transforming growth factor beta regulat		NM 199122	MIDAS	0.025042612	
	2842624	protocadherin LKC	PCLKC	NM 017675	MIDAS	0.026716486	
	3110317		CTHRC1	NM 138455	MIDAS	0.026852168	
	3020343	met proto-oncogene (hepatocyte growt		NM 000245	MIDAS	0.026971756	
	2692319	adenylate cyclase 5	ADCY5	NM 183357	MIDAS	0.027018046	
	3275922	protein kinase C, theta	PRKCO	NM 006257	MIDAS	0.027054647	
	2451593	myosin binding protein H	MYBPH	NM 004997	MIDAS	0.027235415	
	3913525	death inducer-obliterator 1	DIDO1	NM 033081	MIDAS	0.027331404	
	3448428	chromosome 12 open reading frame 11	C12orf11	NM 018164	MIDAS	0.027341785	
	3934245	cystatin B (stefin B)	CSTB	NM 000100	MIDAS	0.02773845	
	3653677	aguaporin 8	AOP8	NM 001169	MIDAS	0.027962223	
	3432030	acvl-Coenzyme A dehydrogenase famil.		NM 025247	MIDAS	0.02830165	
	3047581	inhibin, beta A (activin A, activin AB a	INHBA	NM 002192	MIDAS	0.028400417	
	3902489	BCL2-like 1	BCL2L1	NM 001191	MIDAS	0.028543407	
	3758510	ets variant gene 4 (E1A enhancer bindi	ETV4	NM 001986	MIDAS	0.029130163	-
	Gene Annotation	ensGene 🗌 knownGene					
				Full Annotation	Export table information	Export *.egr for IGB	


When user needs to launch IGB for browsing the transcript information, user needs to choose "YES" to launch the IGB.

-Splicing Study 1	3351711	forkhead box R1	FOXR1	NM 181721	MIDAS	0.022765934	-
Data Preparation	3939470	matrix metallopeptidase 11 (stromelysi		NM 005940	MIDAS	0.022703934	-
C Array Grouping	2652675	epithelial cell transforming sequence 2		NM 018098	MIDAS	0.02307480	-
15197 transcripts (10	3009399	heat shock 27kDa protein 1	HSPB1	NM 001540	MIDAS	0.0245299742	-
(279)	3049025	transforming growth factor beta regulat		NM 199122	MIDAS	0.024059742	
± (2)	2842624	protocadherin LKC	PCLKC	NM 017675	MIDAS	0.026716486	-
	3110317	collagen triple helix repeat containing 1	CTHRC1	NM 138455	MIDAS	0.026852168	-
	3020343	met proto-oncogene (hepatocyte growt		NM 000245	MIDAS	0.026971756	-
	2692319	adenylate cyclase 5	ADCY5	NM 183357	MIDAS	0.027018046	-
	3275922	protein kinase C, theta	PRKCQ	NM 006257	MIDAS	0.027054647	-
	2451593	myosin binding protein H	MYBPH	NM 004997	MIDAS	0.027235415	-
	3913525	death inducer-obliterator 1	DIDO1	NM 033081	MIDAS	0.027331404	-
	3448428	ch Launch IGB		×	MIDAS	0.027341785	-
	3934245	cy:			MIDAS	0.02773845	-
	3653677	ag n De company ter lange le			MIDAS	0.027962223	-
	3432030	ac: Do you want to latitica it.	negrated Genor	He BIOWSel?	MIDAS	0.02830165	-
	3047581	int			MIDAS	0.028400417	-
	3902489	BC 是①	否(N)		MIDAS	0.028543407	1
	3758510	ets			MIDAS	0.029130163	
	Gene Annotation	naGene ∏ knownGene					_
			E IE	Ill Annotation	Export table information	Export *.egr for IG	'n

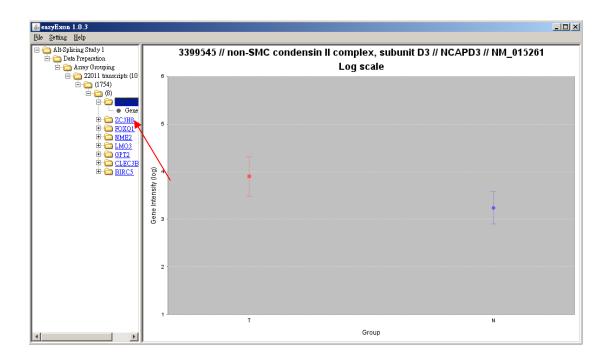

Step 5: Graphic Presentation

Step 5.a: Graphic Presentation for Exon Level


When user launches IGB, user may click the hyper link in the left panel to browse the transcript in IGB.

When user clicks the gene of interest in the left panel, a graphic representation for exons in the corresponding transcript cluster will be displayed in the right panel. The x-axial is the probeset id for each exon, and y-axial represents log scale intensity and splicing index. Neighboring probesets with the same color in gene annotation means that those probesets are in the same exon.

User may select log scale and fold change on the tree of left panel, intensity of log scale and fold change will be displayed on the right panel.


User can modify the Filtration (<u>Step 3</u>), and gene signature and gene annotation (<u>Step 4</u>) repeatedly.

Note: Labels for probeset id of x-axial.

- (i) Probeset id labeled in red: fold change is greater than the threshold set in <u>Step</u> <u>3-1.a.</u>
- (ii) Probeset id labeled in light gray: *p*-value from DABG file is greater than the threshold set in <u>Step 1.b</u>.
- (iii) Probeset id labeled with "*": *p*-value computed by MIDAS is smaller than the threshold set in <u>Step 3-1.a</u>.
- (iv) Probeset id labeled with "PAC": Patter based correlation is smaller than the threshold set in <u>Step 3-1.a</u>.

Step 5.b: Graphic Presentation for Gene Level

When user launches the IGB, user may click the hyper link to browse the transcript in the IGB.

User can modify the Filtration (<u>Step 3</u>), and gene signature and gene annotation (<u>Step 4</u>) repeatedly.

2. Environment Setting

User may download our database and meta probeset files from our homepage (<u>http://microarray.ym.edu.tw:8080/easyexon/index.jsp?mode=support</u>) and set the path of those downloading files and database.

2-1: Setting the Path of Meta Probeset Files

User may set the path of meta probeset files by clicking "Setting" on Menu Bar and select "META file Path."

🕌 easyExon 1.0.3		×
File Setting Help		
DEC Path	Data Input 1. Exon-Level Summary File from Expression Console ▼	1
	Perform log transformation	
	2. Exon-Level DABG Summary File (Optional) Select Filter on DABG, retain summarized values if at least 0 out of 0 arrays have p-value <= 0.05	
	3. Log stabilization factor = 16	
	Reset All Submit -> Array Grouping	
K. F		

Select the path of meta probeset files directory which includes *.mps files.

🕌 META Path		×
META Path		
META file path: D:\work\Projects\easyExon related\example	s'Library	Select
	Use Default Setting	OK Cancel

2-2: Setting the Path of Database

User may set the path of database by clicking "Setting" on Menu Bar and select "JDBC Path."

SearyExon 1.0.3	×

Type the location of database which includes IP address (or domain name), port number, and the name of database. (**E.g.:** microarray.ym.edu.tw:3306/annot_exon)

🖆 JDBC Path	×
JDBC Path	
1. Location of JDBC: microarray.ym.edu.tw:3306/annot_exon 2. User Name: guest]
3. Password:	
Use Default Setting OK	Cancel

Type the user name and password.

🛓 JDBC Path	×
JDBC Path 1. Location of JDBC: microarray.ym.edu.tw:3306/annot_exon 2. User Name: guest 3. Password: *****]
Use Default Setting OK	Cancel